## Conjugate Addition of Tris(phenylthio)methyl-lithium to αβ-Unsaturated Ketones. Synthesis of γ-Keto-esters

By Abdul-Rahman B. Manas and Robin A. J. Smith\*

(Chemistry Department, University of Otago, P.O. Box 56, Dunedin, New Zealand)

Summary Conjugate addition of (1) to unhindered  $\alpha\beta$ unsaturated ketones proceeds in good yield to produce  $\gamma$ -keto-orthothioesters.

CARBANIONS, stabilized by adjacent sulphur atoms, have been extensively used in organic synthesis.<sup>1</sup> Their reaction with  $\alpha\beta$ -unsaturated ketones generally results in carbonyl (1,2) addition rather than conjugate (1,4) addition.<sup>2</sup> We report that tris(phenylthio)methyl-lithium (1) reacts in a conjugate fashion with unhindered  $\alpha\beta$ -unsaturated ketones producing  $\gamma$ -keto-orthothioesters which are in turn readily hydrolysed to  $\gamma$ -keto-esters. Thus the anion of reagent (1) can be considered as an ester carbanion equivalent (*i.e.* ROC=O).

Triphenyl orthothioformate  $(2)^3$  is rapidly deprotonated to the anion  $(1)^{3-5}$  by treatment with n-butyl-lithium in tetrahydrofuran at -78 °C under nitrogen. Addition of cyclohex-2-enone (1 equiv.) to this solution followed by hydrolytic workup affords compound (3) in good yield

(Table) which is converted into the ester  $(4)^6$  (95%) by  $Hg^{2+}$  catalysed methanolysis<sup>7</sup> followed by acid treatment.<sup>8</sup>

## TABLE

Reaction of  $\alpha\beta$ -unsaturated ketones with (1).

| Substrate                 |     | Yield (%) <sup>a</sup> |
|---------------------------|-----|------------------------|
| Cyclohex-2-enone          | • • | 95, 50 <sup>b.c</sup>  |
| 2-Methylcyclohex-2-enone  | ••  | 85                     |
| 5,5-Dimethylcyclohexenone |     | 65                     |
| PhCH=CHCOMe               |     | 60                     |
| PhCH=CHCOPh               | ••  | 95                     |
| PhCH=CHCOCMe <sub>3</sub> | • • | 85                     |
| MeCH=CHCOMe               | • • | 65                     |
| 3-Methylcyclohex-2-enone  | • • | ${<}5^{	t b}$          |
| $Me_{\bullet}C = CHCOMe$  |     | <5 <sup>b</sup>        |

<sup>a</sup> Isolated yield of  $\gamma$ -keto-orthothioester unless otherwise stated. <sup>b</sup> Determined by n.m.r. analysis of the crude reaction product mixture. <sup>c</sup> Using the sodium salt (5).



Reduction of (3) with Raney nickel gives 3-methylcyclohexanone (70%).

Results of the reaction of (1) with various  $\alpha\beta$ -unsaturated ketones are listed in the Table. The yields of  $\gamma$ -ketoorthothioesters are satisfactory except for hindered  $\beta\beta$ disubstituted enones. The use of the sodium salt (5), prepared from (2) and sodium bistrimethylsilylamide,<sup>9</sup> gives significantly lower yields of orthothioester. Reaction of (1) with unsaturated aldehydes gives products resulting from 1,2 addition.<sup>10</sup>

The ready availability of (2) combined with the variety of possible transformations<sup>11</sup> of the orthothioester unit make (1) and related compounds potentially useful synthetic reagents.

(Received, 30th December 1974; Com. 1563.)

<sup>1</sup> D. Seebach, Synthesis, 1969, 1, 17.

<sup>2</sup> For other reports of 1,4 addition of sulphur-stabilized carbanions to αβ-unsaturated ketones see: T. Mukaiyama, K. Narasaku, and M. Furusato, J. Amer. Chem. Soc., 1972, 94, 8641; J. E. Richman, J. L. Herrmann, and R. H. Schlessinger, Tetrahedron Letters, 1973, 3271.

 <sup>3</sup> A. Fröling and J. F. Arens, *Rec. Trav. Chim.*, 1962, 81, 1009.
<sup>4</sup> D. Seebach, *Chem. Ber.*, 1972, 105, 487.
<sup>5</sup> G. A. Wildschut, H. J. T. Bos, L. Brandsma, and J. F. Arens, *Monatsh.*, 1967, 98, 1043.
<sup>6</sup> D. K. Banerjee, J. Dutta, and G. Bagavant, *Proc. Indian Acad. Sci.*, 1957, 46A, 80; H. O. House, R. A. Latham, and C. D. Slater, Our Cham. 1962, 21, 9652. J. Org. Chem., 1966, **31**, 2667. <sup>7</sup> R. A. Elisson, W. D. Woessner, and C. C. Williams, J. Org. Chem., 1972, **37**, 2757.

<sup>8</sup> M. Janot, X. Lusinchi, and R. Goutarel, Bull. Soc. chim. France, 1961, 2109.

<sup>9</sup> U. Wannagat and H. Niederprum, Chem. Ber., 1961, 94, 1540.

<sup>10</sup> For the reaction of (1) with saturated aliphatic and aromatic aldehydes see ref. 4.

<sup>11</sup> E.g. R. H. DeWolfe, 'Carboxylic Ortho Acid Derivatives,' Academic Press, New York, 1970, ch. 6.